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Abstract. The energies of the levels belonging to a Rydberg series 1snp 1,3P in a two electron atom have
been determined by means of the quantum defect theory for a two-electron atom with nuclear charge Z con-
sidered as a parameter. Comparison with configuration interaction calculations suggests that the analytic
quantum defect expression for the energy levels may be in fact asymptotically exact as Z → 1, providing
an analytic description of the disappearance of the Rydberg states with L > 0 when Z approaches the
value of 1.

PACS. 31.10.+z Theory of electronic structure, electronic transitions, and chemical binding –
31.15.-p Calculations and mathematical techniques in atomic and molecular physics (excluding
electron correlation calculations)

1 Introduction

Properties of the eigenvalues En(Z) of a two-electron
atomic system, i.e., quantum mechanical system described
by the Hamiltonian
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as functions of the nuclear charge Z is a subject which re-
ceived considerable attention. The reason behind is clear,
the system is simple enough for En(Z)’s to be accurately
computed numerically. Studying En(Z)’s one may hope
to gain some understanding of exact solutions of a very
complicated quantum mechanical problem.

The ground state eigenvalue, E0(Z), of this
Hamiltonian and its properties as a function of the
parameter Z is the best studied one. It was rigorously
proved by Kato [1] that E0(Z) is an analytic function
of Z.

It is clear that for sufficiently small positive Z-values
system described by (1) does not have bound states. All
bound states must disappear when moving from large to
small Z-values. It could be expected that this disappear-
ance is reflected in some properties of E0(Z), e.g., E0(Z)
could have a singularity at the point Z = Zcrit where
bound state disappears. The position of this singularity
can in principle be located by studying numerically coef-
ficients of the perturbation series in powers of 1/Z. These
coefficients up to the terms of large order have been com-
puted in a number of works [2–4]. They have been ana-
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lyzed using different techniques [5–8] such as the ratio test
or Pade analysis.

In the paper of Baker et al. [9], the authors performed
high-precision calculations of the first 400 coefficients of
the perturbation series for the ground state of the He-like
ions. Upon analysis of the asymptotic behavior of these
coefficients, they obtained the value Zcrit ≈ 0.911029 as
the position of the singular point of E0(Z) for the ground
state. These authors also resolved a long-standing contro-
versy by proving that it is exactly at the singular point
Z = Zcrit that the ground state ceases to be a bound state.
Their value of the critical point has been subsequently re-
fined [10–12].

Other properties of E(Z) for the ground state of a
two-electron system have been studied, such as possi-
ble existence of other singular points in the complex Z-
plane [5,13]. In [14,15] a dispersion relation for E(Z) has
been proposed and verified by means of a complex rotation
calculation.

As far as excited states and properties of their ener-
gies as functions of Z are concerned, much less is known.
It was conjectured that all the states belonging to a given
Rydberg series cease to be bound states for Z = 1 [9].
In the paper [16] we proposed a simple model based on
the quantum defect theory (QDT), which seems to pro-
vide accurate description of the energies of the Rydberg
series 1sns 3S for Z-values in the neighborhood of 1. The
overall agreement between values obtained in framework
of QDT and computed ones, allowed to conjecture that
QDT might provide in fact leading term of some still un-
known asymptotic expansion, that En(Z)’s for this series
possess.
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In the present paper we generalize the treatment given
in [16] for the case of the states with L > 0 (L-total angu-
lar momentum). Taking as an example 1snp 1,3P Rydberg
series, we show that QDT using only two parameters pro-
vides quite accurate description of Z-behavior of the low-
lying members of Rydberg series.

The case of the states with L > 0 is perhaps more
interesting then that of S-states since it gives more clear
evidence that the QDT description of the system (1) is ad-
equate when Z assumes values in the neighborhood of 1.
For L > 0-states QDT, as we shall see, predicts varia-
tion of quantum defects along the series for a given Z
in complete agreement with the results of the numerical
calculation.

2 Theory

As in [16] we consider a very simple model of a Rydberg
state of a two-electron system with nuclear charge Z,
viz., we consider a particle moving in a combination of
Coulomb and short-range fields. The corresponding model
Hamiltonian reads

Ĥmod = −1
2
∇2

R − z

R
+ Vsr(R), (2)

where z = Z − 1 and Vsr(R) is a short-range potential
vanishing outside some sphere.

For simplicity we consider below only P-states of a
two-electron system, modification of the derivation given
below for higher partial waves being straightforward.

Essential steps of the derivation below are the same
as for S-states considered in [16]. We reproduce them in
details for the sake of completeness.

In framework of the QDT formalism the equation
which defines positions of the poles of T -matrix for this
model system reads for p-wave [17]

M
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)
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)
, (3)

where M(k2, z) can be found if solution of the Schrödinger
equation in the inner region where short-range interaction
is present is known, the function τ(k) can be expressed as

τ(k) = ln(k) +
1
2

[Ψ(iη) + Ψ(−iη)] +
iπ

e2πη − 1
, (4)

where Ψ(x) is the digamma function [18] and η = −z/k.
QDT approach to the description of the Rydberg states

relies on the fact that the function M(k2) is an analytic
function of k2 [17].

This is a consequence of a general statement about the
analicity of solutions of a differential equation as functions
of a given parameter. From the same general statement
it follows that the function M(k2, z) is also an analytic
function of z.

Introducing variables k = iκ and u = z/κ and
using known properties of the digamma function [18],

equation (3) can be rewritten as
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,

(5)
where M(k2, z) is an analytic function of both arguments.
Introducing new function β(k2, z) = −9M(k2, z)/2 (ana-
lytic in both arguments), equation (5) can be rewritten as

β(k2, z)
z3

(
1 − 1

u2

) − ln z = − ln u + π cotπu +
1
2u

+ Ψ(u). (6)

We are interested in the solutions of this equation for
which u → C, where C-positive constant, when z → 0. It
is easy to see that equation (6) has such solutions of the
form u = n + δ(z), and hence κ = z/(n + δ), where δ → 0
when z → 0. That gives for the energy the well-known
Rydberg formula, δ being the quantum defect. Retaining
only the two leading terms in z it is easy to show that δ(z)
is given by the following expression

δ =
z3

(
1 − 1

n2

)
β(z)

, (7)

where it is understood that it is legitimate to retain only
two leading terms of the z expansion of the function β(z)

β(z) ≈ β0 + β1z, (8)

where β0, β1 are some numbers independent of energy (ac-
count of their energy dependence would introduce terms
of higher orders in z).

Recalling that parameter z in our model is z = Z − 1,
where Z is the charge of the nucleus, we arrive at the
following tentative expression for the energy levels of the
Rydberg series 1snp for Z → 1

E(Z) = −Z2

2
− (Z − 1)2

2(n + δ)2
, (9)

with n = 2, 3... and

δ =
(Z − 1)3

(
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)
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, (10)

where function β(Z) is analytic in the neighborhood of
Z = 1 and has an expansion

β(Z) = β0 + β1(Z − 1) + ..., (11)

where both β0 and β1 do not depend on n.
As we shall see equations (9, 10) do seem to describe

behavior of level energies of 1snp series of a two electron
system for the charge of the nucleus Z close enough to 1.
A feature of the equation (10) not present in the case
of S-states is dependence of the quantum defect on the
quantum number n through the factor 1− 1/n2. If shown
to be correct, this dependence is a good demonstration
of the overall validity of the approach. Indeed, this factor
has a pure Coulomb origin (it is in fact related to the
normalization of the Coulomb radial wave functions).

The numerical results presented in the next section
seem to confirm this n dependence of the quantum defect
for the 1snp series.
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3 Numerical results

Numerical calculation of the energies of 1snp series does
not pose any serious problems. As in the case of the of
1sns 3S series considered in [16] the numerical evidence
suggests that for Z close to 1, these states exhibit simple
hydrogenlike properties (the circumstance which actually
makes the present approach possible). Therefore straight-
forward calculation using simple Slater type basis which
is sufficiently large, gives energies accurate enough to ver-
ify formulas (9, 10). More specifically, we used the split-
exponential basis set constructed of the orbitals

φilm(r) = ri
(
ae−Zr + δl

1be
−(Z−1)r

)
Ylm(r̂). (12)

The radial parts were chosen in this particular form so as
to describe adequately the series 1snp (hence the second
term δl

1be
−(Z−1)r in the radial function, which is present

only for l = 1).
Proper combinations of the products of φilm(r) cou-

pled and symmetrized to correspond to a given symmetry
of the state (either 1Po or 3Po) have been formed. Finding
the eigenvalues amounted to the solution of the general-
ized eigenvalue problem

det (Hij − ERij) = 0, (13)

where Hij and Rij are Hamiltonian and overlap matrices
respectively.

Both for singlet and triplet P-states the parameters i
and l of the orbitals (12) were chosen as follows: all
orbitals with l < 9 which by symmetry considerations
could be coupled to produce P-states were used. For
each l the parameter i in equation (12) assumed values
i = l + 1, ..., l + 10. This resulted in overall dimension
N = 850 of the eigenvalue problem (13). The energy lev-
els for the first few members of Rydberg series for singlet
and triplet P-states are shown in Tables 1–2 (second col-
umn). A few words should be said about possible accuracy
of these values (the issue which is very important in the
present problem where we are interested in numerically
small effects). We performed a few separate diagonaliza-
tions for larger basis set (N = 1100 both for singlet and
triplet P-states). The results for the low-lying members
of the Rydberg series were stable within first eight digits.
Thus the accuracy of the results reported in Tables 1–2
must be on the order of 10−8 a.u. This, as we shall see,
will be sufficient to detect effects which are predicted by
the formulas (9, 10).

4 Discussion

The third column of Tables 1–2 contains results for the
quantum defects. The quantum defects were computed us-
ing formula (9) as a definition. The overall n-dependence
of the quantum defects along the Rydberg series for a
fixed Z is obvious. The extent to which this n-dependence
is reproduced by the factor 1 − 1/n2 following from
the QDT analysis can be judged using the data from the

Table 1. Level energies, quantum defects, and β(Z)-values for
1snp 1P states.

Z E (a.u.) δ β(Z) δ (Eq. (10))

1.04 –0.54099998 0.00009101 0.52743653 0.00009108

–0.54088888 0.00010782 0.52763661 0.00010795

–0.54085000 0.00011200 0.53569178 0.00011385

–0.54083200 0.00011719 0.52426955 0.00011658

–0.54082222 0.00012450 0.49976131 0.00011807

1.05 –0.55156245 0.00016162 0.58006582 0.00016164

–0.55138887 0.00019322 0.57505371 0.00019157

–0.55132812 0.00019969 0.58683255 0.00020205

–0.55130000 0.00020501 0.58532985 0.00020690

–0.55128472 0.00020929 0.58066426 0.00020953

–0.55127551 0.00020637 0.59334930 0.00021112

–0.55126953 0.00021505 0.57218149 0.00021215

1.06 –0.56224989 0.00025227 0.64216925 0.00025592

–0.56199996 0.00030005 0.63990400 0.00030332

–0.56191248 0.00031648 0.63984681 0.00031991

–0.56187199 0.00032295 0.64208488 0.00032758

–0.56184999 0.00033003 0.63631113 0.00033175

–0.56183673 0.00033291 0.63557766 0.00033427

–0.56182812 0.00032713 0.64996861 0.00033590

1.08 –0.58399962 0.00047604 0.80664658 0.00051962

–0.58355542 0.00056951 0.79913330 0.00061585

–0.58339994 0.00060214 0.79716219 0.00064953

–0.58332797 0.00061730 0.79623937 0.00066512

–0.58328887 0.00062072 0.80193441 0.00067358

–0.58326529 0.00064442 0.77830184 0.00067869

–0.58324999 0.00064008 0.78740549 0.00068200

1.09 –0.59506190 0.00059730 0.91536225 0.00069034

–0.59449978 0.00071893 0.90134575 0.00081818

–0.59430303 0.00076111 0.89795303 0.00086293

–0.59421195 0.00078105 0.89602783 0.00088364

–0.59416247 0.00079216 0.89470917 0.00089489

–0.59413263 0.00079883 0.89396262 0.00090167

–0.59411327 0.00079972 0.89732035 0.00090607

1.10 –0.60624910 0.00071638 1.04692350 0.00088757

–0.60555523 0.00086777 1.02434126 0.00105194

–0.60531236 0.00092064 1.01831584 0.00110947

–0.60519992 0.00094527 1.01558501 0.00113609

–0.60513884 0.00095687 1.01604543 0.00115056

–0.60510201 0.00096459 1.01555324 0.00115928

–0.60507811 0.00096786 1.01706802 0.00116494

1.11 –0.61756125 0.00082749 1.20636121 0.00111164

–0.61672177 0.00101094 1.17030734 0.00131750

–0.61642792 0.00107468 1.16110049 0.00138955

–0.61629189 0.00110367 1.15773621 0.00142290

–0.61621799 0.00111879 1.15662926 0.00144101

–0.61617343 0.00113098 1.15284156 0.00145193

–0.61614450 0.00113214 1.15727899 0.00145902

1.13 –0.64056037 0.00100791 1.63481967 0.00164119

–0.63938810 0.00126019 1.54967808 0.00194511

–0.63897777 0.00134771 1.52828642 0.00205148

–0.63878781 0.00138815 1.51937269 0.00210072

–0.63868461 0.00140925 1.51567611 0.00212746

–0.63862238 0.00142276 1.51266879 0.00214359

–0.63858198 0.00142883 1.51359381 0.00215406
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Table 2. Level energies, quantum defects, and β(Z)-values for
1snp 3P states.

Z E (a.u.) δ β(Z) δ (Eq. (10))

1.04 –0.54100003 –0.00013349 –0.35958656 –0.00013289

–0.54088890 –0.00015374 –0.37003748 –0.00015750

–0.54085000 –0.00017599 –0.34093159 –0.00016611

–0.54083200 –0.00017187 –0.35748753 –0.00017010

–0.54082222 –0.00017249 –0.36072410 –0.00017227

–0.54081633 –0.00016493 –0.38012033 –0.00017357

1.05 –0.55156258 –0.00024859 –0.37712147 –0.00025134

–0.55138892 –0.00029384 –0.37813882 –0.00029789

–0.55132814 –0.00030972 –0.37836103 –0.00031418

–0.55130001 –0.00031497 –0.38098838 –0.00032172

–0.55128473 –0.00032637 –0.37235814 –0.00032581

–0.55127551 –0.00032870 –0.37252862 –0.00032828

1.06 –0.56225019 –0.00041254 –0.39269016 –0.00042100

–0.56200006 –0.00048738 –0.39394215 –0.00049896

–0.56191253 –0.00051368 –0.39421521 –0.00052625

–0.56187202 –0.00052422 –0.39555678 –0.00053888

–0.56185001 –0.00053393 –0.39331093 –0.00054574

–0.56183674 –0.00053408 –0.39618171 –0.00054987

–0.56182813 –0.00054039 –0.39346607 –0.00055256

1.08 –0.58400074 –0.00092036 –0.41722609 –0.00094025

–0.58355581 –0.00108255 –0.42040485 –0.00111438

–0.58340011 –0.00113951 –0.42123262 –0.00117532

–0.58332806 –0.00116561 –0.42168554 –0.00120353

–0.58328892 –0.00118128 –0.42138988 –0.00121885

–0.58326533 –0.00118828 –0.42208312 –0.00122809

–0.58325001 –0.00119173 –0.42291329 –0.00123408

1.09 –0.59506380 –0.00128065 –0.42693315 –0.00130117

–0.59450045 –0.00150320 –0.43107957 –0.00154212

–0.59430333 –0.00158089 –0.43231201 –0.00162646

–0.59421210 –0.00161804 –0.43252292 –0.00166549

–0.59416256 –0.00163666 –0.43304567 –0.00168670

–0.59413269 –0.00164831 –0.43324615 –0.00169948

–0.59411331 –0.00165874 –0.43262234 –0.00170778

1.10 –0.60625216 –0.00172177 –0.43559722 –0.00173611

–0.60555630 –0.00201580 –0.44096163 –0.00205761

–0.60531283 –0.00211927 –0.44236835 –0.00217014

–0.60520017 –0.00216734 –0.44293928 –0.00222222

–0.60513899 –0.00219360 –0.44320924 –0.00225051

–0.60510211 –0.00220732 –0.44379330 –0.00226757

–0.60507817 –0.00222115 –0.44318166 –0.00227865

1.11 –0.61756591 –0.00224942 –0.44378057 –0.00224932

–0.61672340 –0.00262688 –0.45038707 –0.00266587

–0.61642865 –0.00275919 –0.45223837 –0.00281166

–0.61629227 –0.00282096 –0.45295251 –0.00287913

–0.61621822 –0.00285495 –0.45325716 –0.00291579

–0.61617357 –0.00287581 –0.45338143 –0.00293789

–0.61614460 –0.00289060 –0.45326371 –0.00295224

1.13 –0.64057008 –0.00357877 –0.46042308 –0.00352535

–0.63939150 –0.00415767 –0.46970794 –0.00417820

–0.63897928 –0.00436039 –0.47236353 –0.00440669

–0.63878860 –0.00445484 –0.47344482 –0.00451245

–0.63868508 –0.00450763 –0.47385754 –0.00456990

–0.63862267 –0.00454024 –0.47402016 –0.00460454

–0.63858218 –0.00456017 –0.47425258 –0.00462703

Fig. 1. Function β(Z) for 1Po and 3Po states, computed
according to equation (7) (solid lines), and linear approxima-
tions (14) (dashed lines).

fourth column of Tables 1–2. This column contains nu-
merical values of β(Z) computed using equation (7) as a
definition. As one can see, for a given Z sufficiently close
to 1, β(Z) remains pretty much constant for the low-lying
members of the singlet and triplet 1snp Rydberg series.
This is in complete agreement with the n-dependence for
the quantum defects predicted by the formula (7). One
could repeat the observation we made above that this
agreement is a direct evidence of Coulombic nature of
these levels, since the factor 1− 1/n2 which seems to pro-
vide quite adequate description of quantum defects behav-
ior with n, is of purely Coulombic origin.

The second aspect of the problem is the behavior of the
quantum defects with Z. Figure 1 plots the function β(Z)
defined by equation (7) for singlet and triplet states. When
computing the values of the function β(Z) we used cor-
responding energies for the lowest member of the series
1s2p 1,3P. For larger Z-values, the β-values for different n
are different, but, anyway, our approach is expected to be
valid for Z sufficiently close to 1. Figure 1 shows that for
triplets β(Z) is pretty much a linear function of Z for Z
as large as Z ≈ 1.15. For singlets the domain where β(Z)
could be approximated by a linear function is more nar-
row (Z < 1.08). The dashed straight lines on the figures
represent linear approximations to β(Z) both for singlet
and triplet states. The coefficients of these approximations
were determined by means of the numerical analysis of the
data in the fourth column of Tables 1–2 and were found
to be

β(Z) ≈ 0.315 + 5.3(Z − 1) singlet states
β(Z) ≈ −0.314− 1.18(Z − 1) triplet states. (14)

The functions β(Z) for the triplet and singlet states be-
have quite differently. The reason of this difference cannot,
of course, be accounted for by means of the present not
truly ab initio approach.

With these linear approximations for β(Z) the quan-
tum defects were computed by means of the equation (7).
The results are presented in Tables 1–2 (fifth column).
The values predicted by the formula (7) and the “true”,
numerically calculated quantum defect values, presented
in the third column of Tables 1–2 agree quite well, showing
strong indication that present approach captures at least
leading Z and n behavior of the quantum defects. Indeed,



I.A. Ivanov: Asymptotic description of the Rydberg states with L > 0 in a two-electron atom 207

Fig. 2. Quantum defects: given by equations (10, 14)
(solid line) and numerically computed (solid circles) for 1s2p 1P
state.

Fig. 3. Quantum defects: given by equations (10, 14)
(solid line) and numerically computed (solid circles) for 1s5p 1P
state.

Fig. 4. Quantum defects: given by equations (10, 14)
(solid line) and numerically computed (solid circles) for 1s2p 3P
state.

the predicted results for the quantum defects presented
for all Z and n were obtained using only two parame-
ters. To illustrate the point more clearly we present in
Figures 2–5 numerically computed and predicted (using
the formulas (7, 14)) quantum defects for levels 1s2p 1P
(Fig. 2), 1s5p 1P (Fig. 3), 1s2p 3P (Fig. 4) and 1s5p 3P
(Fig. 5).

To our opinion, the observed agreement of predicted
values and the “true” ones for a given value of Z and for
different n along the Rydberg series gives enough evidence
that the present QDT approach is valid. As we discussed
above, the origin of the factor 1− 1/n2 is purely Coulom-
bic. This factor in the formula (7) seems to reproduce rea-
sonably well n-dependence of the quantum defects. This
favorably distinguishes L > 0-states from the S-states,
where arguments similar to those leading to the formu-
las (9, 10) produce quantum defect independent of n [16]

Fig. 5. Quantum defects: given by equations (10, 14)
(solid line) and numerically computed (solid circles) for 1s5p 3P
state.

for different members of the Rydberg series. In this re-
spect the case of P-states is perhaps more interesting as it
demonstrates more clearly that the present approach does
work.

From the other hand the agreement of the Z depen-
dencies demonstrated in Tables 1–2 may not be so conclu-
sive since virtually any function in a narrow domain can
be represented as a linear function. It might be desirable
to obtain numerical values for the quantum defects for Z
even closer to 1 (e.g. Z ≈ 1.01) to verify formulas (14).
We did not succeed in performing reliable calculation for
such Z due to the problems of numerical character, the
levels becoming more and more densely spaced when Z
approaches 1.

5 Conclusion

Similar procedure, with only minor modifications, could
be applied as well for the states with larger momenta,
though numerical verification of the formulas analogous
to (9, 10) would be much more difficult task (it is easy
to see that in the leading order the present approach pro-
duces (Z − 1)2l+1 dependence for the quantum defects).

We believe, however, that triplet S-states considered
in [16] and P-states presented in this paper give enough
evidence that the present approach captures essential fea-
tures of energy levels behavior near Z = 1. This circum-
stance, we believe, is interesting by itself, since there are
no many examples of analytic results for a two-electron
system, especially in the region of Z ≈ 1, where role of cor-
relations, for example for the bound 1Se state is predom-
inant. A natural question is why is it possible to get such
a simple analytic description in a seemingly untractable
problem. Numerical calculation shows that the Rydberg
states considered in the present paper are becoming pro-
gressively more and more “hydrogenlike” when Z → 1.
This provides ground for the possibility of the description
of these states by means of QDT.

An interesting question is the mathematical status of
the formulas (9, 10). Basing on the numerical evidence,
one might argue that this formulas provide asymptotic
description of level energies behavior when Z → 1. QDT
approach presented in the paper is a single channel one,
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all other closed channels being neglected. The apparent
success of the single channel approach could be explained
if the contribution due to these neglected channels be-
comes numerically small when Z → 1 comparing to the
contribution given by equations (9, 10). Of course, it by
no means signifies that the formulas (9, 10) can provide
an insight into analytic character of a possible singular-
ity of En(Z)’s at Z = 1. Contributions of the neglected
channels, though numerically small, might well introduce
additional terms singular when Z → 1.

Another question is for what value of Z the levels be-
longing to a Rydberg series disappear. It seems probable
(though has not been proved rigorously) [9] that all these
levels cease to be bound states at Z = 1 precisely. Our
formulas (9, 10) and their agreement with the results of
numerical calculation support this view, though, of course,
one cannot exclude the possibility that at Z much closer
to 1 something dramatic may happen.

Mathematically rigorous description of the behavior
of the energies in vicinity of Z = 1 is an extremely diffi-
cult task and the present elementary approach can by no
means pretend to give such a complete and rigorous de-
scription. However, agreement of the numerical data and
expressions offered by QDT approach suggests that QDT
captures some essential features of the phenomena, possi-
bly giving leading terms of some asymptotic expansions.
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